Interacting with LLMs for Grounded Tasks

Daniel Fried

Language Technologies Institute

Carnegie Mellon University

Language Interfaces

Science Fiction Her, 2013

Let's start with your emails. You have several thousand emails regarding LA Weekly, but it looks like you haven't worked there in many years.

> Oh yeah, I guess I was saving those because in some of them I thought I might have written some funny stuff.

Yeah, there are some funny ones. I'd say there are about 86 that we should save. We can delete the rest.

Today ChatGPT, 2023

Please help me organize my emails.

Sure! Here are some tips for organizing your emails.

1. Unsubscribe: Reduce the number of unwanted emails by unsubscribing from mailing lists that you no longer need.

2. . . .

Thanks, but I want you to do it.

I'm sorry, I am a text-based AI language model and do not have access to your email or the ability to physically sort them for you.

Interacting with LLMs for...

Multimodal dialogue

Question-based retrieval

"what is next to the computer?"

Referential tasks

"big light dot next to dark dot"

```
def is_light(n, ctx):
    return ctx[x, -1] > 0.3
```

```
def are_close(x, y, ctx):
    dist = np.linalg.norm(
        ctx[x,:-2]-ctx[y,:-2]
    )
    return dist < 0.3</pre>
```

Multimodal Dialogue

Parameter-efficient fusion of existing LLMs and image models; trainable in ~4 GPU days.

Images as Inputs

Align *input* representations of an LLM (OPT, Llama2) and *visual encoder outputs (CLIP)* on image captions

[Frozen, Tsimpoukelli et al., 2021; Limber, Merullo et al., 2023]

Images as Outputs

Align output representations of an LLM (OPT, Llama2) and visual models (CLIP, Stable Diffusion) on image captions

GILLMapper: An Improved LLM-to-Generator Map

- Previous approaches use <u>linear mappings</u> between LLMs and visual models
- This is insufficient for image generation: decoders require <u>dense</u> information

Multimodal Few-Shot Learning with Frozen Language Models (<u>Tsimpoukelli et al., 2021</u>) Linearly Mapping from Image to Text Space (<u>Merullo et al., 2023</u>) Grounding Language Models to Images for Multimodal Inputs and Outputs (<u>Koh et al., 2023</u>)

Evaluation: Contextual Image Generation

- Given a Visual Story, generate a relevant image
- Need to condition on long, temporally dependent text
- (Optionally) Condition on image inputs interleaved within the text

The Effect of Context

Multi-modal context is worth more than

uni-modal context, producing more relevant generation results.

Our model distills from Stable Diffusion, but outperforms it with multi-modal context.

Image generators require **denser** input sequences. Linear mappings are insufficient.

	CC3M	VIST
Model	FID (\downarrow)	CLIP Sim (†)
Stable Diffusion [43]	13.94	0.598
Ours + Linear	15.50	0.500
Ours + 3-layer MLP	15.33	0.502
Ours + Transformer Encoder	16.30	0.605
Ours + GILLMapper	15.31	0.641

Qualitative Examples

Stable Diffusion

Ours

"A dignified beaver wearing glasses, a vest, and colorful neck tie. He stands next to a tall stack of books in a library."

Stable Diffusion

Ours

"A drop-top sports car coming around a bend in the road"

Stable Diffusion

Ours

"Snow mountain and tree reflection in the lake"

Stable Diffusion

Ours

"a group of penguins in a snowstorm"

Qualitative Examples

Interacting with LLMs for...

Multimodal dialogue

Question-based retrieval

"what is next to the computer?"

Referential tasks

"big light dot next to dark dot"

```
def is_light(n, ctx):
    return ctx[x, -1] > 0.3
```

```
def are_close(x, y, ctx):
    dist = np.linalg.norm(
        ctx[x,:-2]-ctx[y,:-2]
    )
    return dist < 0.3</pre>
```

Question-Based Retrieval

Question-Based Retrieval

[Open-domain clarification question generation without question examples. White et al., EMNLP 2021]

What Makes an Informative Question?

Sedrick Keh

Is there a computer in the image? X

Is there a cat in the image?
$$X$$

What is next to the computer? \checkmark

[Asking more informative questions for grounded retrieval. Keh et al., arXiv, 2023]

What Makes an Informative Question?

What is next to the computer?

What Makes an Informative Question?

Images, i Belief state: P(i)

Generating Informative Questions

Generating Informative Questions

Experiments

- Play with people using sets of 10 MSCOCO images.
- Compare against a Yes/No question method from past work [White et al. 2021].
- Evaluate accuracy and number of questions asked.
- Also need to avoid presupposition errors in the VQA models see the paper!

Results: Accuracy

Results: Number of Questions

■ Yes/No Questions ■ Ours

With 100 Images (Automatic Evals)

Interacting with LLMs for...

Multimodal dialogue

Question-based retrieval

"what is next to the computer?"

Referential tasks

"big light dot next to dark dot"

def is_light(n, ctx):
 return ctx[x, -1] > 0.3

```
def are_close(x, y, ctx):
    dist = np.linalg.norm(
        ctx[x,:-2]-ctx[y,:-2]
    )
    return dist < 0.3</pre>
```

Referential Dialogue and QA

Code for Table QA

Shuyi Chen Ryan Liu Yihan Cao

Zora Wang

Question:

Who is more likely to have cancer, the elder or the young?

Title: Number and percentage of people who are interviewed who have or have had illnesses.

711	Cold		Cancer	
Illnese	total	percent	total	percent
All patients	10,000	2.5%	200	0.3%
Elders	7,400	3.5%	126	0.9%
Young	2,600	1.5%	74	0.2%

Answer:

Table:

[API-Assisted Code Generation for Question Answering on Varied Table Structures. Cao et al., EMNLP 2023]

Python gives a unified representation across varied table formats and datasets

Dataset	HiTab	Spider	AIT-QA	WikiTQ
Baseline	MAPO 40.7	DIN-SQL 61.5	RCI 51.8	BINDER 54.8
Codex	59.6	61.2	77.8	41.7
w/ API (Ours)	69.3	63.8	78.0	42.4

[API-Assisted Code Generation for Question Answering on Varied Table Structures. Cao et al., EMNLP 2023]

Grounded Collaborative Dialogue

A: I have three dots in a line with a dark one in the center.

A: Is there a large black dot to the left of the three grey dots?

OneCommon [Udagawa and Aizawa, 2019 & 2020]

cluster of three grey dots in a triangle?

B: Yes, let's select the black one.

Beliefs About What's In Common

[Symbolic Planning and Code Generation for Grounded Dialogue. Chiu et al., EMNLP 2023]

Justin Chiu

Method Overview

Reading

Dots mentioned **p(x|u)**

Partner utterance **u**: "Is there a big light dot next to a big dark one?"

Reading via a Code LLM

)

from perceptual_library import is_small, ...
dot1, dot2, dot3, ... = get_dots()

Grounding function library

- Functions are predicates over dots
- Manually designed for OneCommon

def is_light(n, ctx):
 return ctx[x, -1] > 0.3

def are_close(x, y, ctx):
 dist = np.linalg.norm(
 ctx[x,:-2]-ctx[y,:-2]
)
 return dist < 0.3</pre>

Belief update

Partner utterance **u**: "Is there a big light dot next to a big dark one?"

Informative questions: Expected information gain

Evaluation

Play the game with humans recruited on Mechanical Turk; evaluate success rate.

- Agents compared:
 - LSTM with Neural CRF Reference Resolver (Fried, Chiu, Klein, 2021)
 - ▷ Ours
 - Humans

Results

Results: Human evaluation

Takeaways

LLMs model language use, but need to be contextualized!

LLMs are useful building blocks in modular systems.

Challenge Environments: WebArena

Shuyan Frank "Tell me the status of my latest order and when will it arrive" Zhou Xu (web) [~/workshop]\$ python web_agent.py What can I do for you? User Intent: Tell me the status of my latest order and when will it arrive Start completing the task ... Ĩ C One Stop Market × + A Not Secure metis.lti.cs.cmu.edu:7770 白☆ 🔲 😁 Incognito My Account My Wish List Sign Out **One Stop Market** Search entire store here... Q 🖢 Advanced Search **Beauty & Personal Care** Sports & Outdoors Clothing, Shoes & Jewelry **Office Products Tools & Home Improvement** Home & Kitchen Health & Household Patio, Lawn & Garden Electronics **Cell Phones & Accessories** Video Games Grocery & Gourmet Food One Stop Market Product Showcases ANGE VANIL THE OF

https://webarena.dev/

Challenge Environments: Sotopia

Xuhui Zhou

Hao

Zhu

Sampling scenarios and social goals	Sampling characters	Simulating interactions
		It's getting really cold. Any chance I can have your blanket?
Negotiation Exchange Competition		hmmm, but I am cold and I think I need this blanket more
	Friends	Well, can we share the blanket then? It could make both of us warmer!
Collaboration Accommodation Persuasion		I am not really comfortable with staying
Scenarios cover a large range of social interaction types	Characters cover a wide range of profiles and relationships.	that close to you, sorry.
	Milliam Brown Agent1	I see, I guess in that case I will just layer more clothes then
Scenario	Chef · He/him · 35	
Two friends are camping in the wilderness and the temperature drops significantly at night	Openness to Experience, Conscientiousness, Extraversion Strategic William Brown loves exploring the food scene in his city and trying out new recipes at home.	Put more clothes on and move away from William. (Interaction ends)
0	Mia Davis Agent2	
Goal (for Agent 1) : Keep the one blanket you have just for yourself	High School Principal · She/her · 50	SOTOPIA-EVAL
@	Decisive	
Goal (for Agent 2) : Convince your friend to share the blanket with you	Mia Davis has two cats. Part of a rebellious punk rock band in her youth	Mia did not achieve her social goals in the end, and their relationship seems to be worse
		tu r

https://sotopia.world/

Collaborators

Yihan Cao

Chen

Shuyi Chen

Justin Chiu

Sedrick Keh

Jing Yu Koh

Ryan Liu

Rush

Russ Salakhutdinov

Saujas Vaduguru

Zora Wang

Wenting Zhao

Thanks!

dfried@cs.cmu.edu http://dpfried.github.io

FROMAGe: https://jykoh.com/fromage GILL: https://jykoh.com/gill

Other Projects

Backup Slides

Code for Table Question Answering

Source and mechanism	All full-time graduate students		Master's		
	Total Percent		All	Percent	
All full-time	433916	100.0	209221	100.0	
Self-support	161641	37.3	139373	66.0	
All sources of support	272275	62.7	69848	33.4	
Federal	65999	15.2	10736	5.1	
Institutional	182135	42.0	52319	25.0	
All mechanisms of support	272275	62.7	69848	33.4	

Original Hierarchical Table

Code for Table Question Answering

Who is <u>more likely</u> to have cancer, the elder or the young?

def co Go to page 10_larger(values: list[float], args: list[str]) -> str:
 """Return the argument associated with the larger value."""
 return args[values.index(max(values))]

def compare_smaller(values: list[float], args: list[str]) -> str:
 """Return the argument associated with the smaller value."""
 return args[values.index(min(values))]

The QA API

Operation APIs compare _larger([data.loc[('Illness', 'Cancer', 'Percent'), ('All Patients', 'Elders')], data.loc[('Illness', 'Cancer', 'Percent'), ('All Patients', 'Young')], ['Elders', 'Young']])

Code for Table Question Answering

Code gives a unified representation across varied table formats and datasets

Dataset	HiTab	Spider	AIT-QA	WikiTQ
Baseline	MAPO 40.7	DIN-SQL 61.5	RCI 51.8	BINDER 54.8
Codex	59.6	61.2	77.8	41.7
w/ API (Ours)	69.3	63.8	78.0	42.4

GILL: A More General Multimodal LM

GILL: A More General Multimodal LM

- Frozen (Tsimpoukelli et al., 2021)
 Flamingo (Alayrac et al., 2022)
 BLIP-2 (Li et al., 2023)
 - Process image + text, generate text only
- FROMAGe (Koh et al., 2023)
 - Process image + text, generate text + retrieve images
- **GILL** (this work)
 - Process image + text, generate text + retrieve images + generate images
 - Decides whether to retrieve images or generate from scratch
 - Resource efficient: trained on 2 GPUs for 2 days

<u>Generating Images with Large Language Models</u>

- Capable of retrieving images, generating images, and generating text
 - Can condition on arbitrarily interleaved image + text inputs
 - Generate text, generate images, and retrieve images as part of the output
- Leverage the learnt abilities of pre-trained text-only LLMs
 - In-context learning
 - Sensitivity to input prompts
 - Generate long and coherent dialogue
- Model agnostic
 - We use a 7B LLM, the CLIP encoder, and the Stable Diffusion image generator
 - Likely benefits from using larger and stronger LLMs in the future
 - Can be applied with other visual models (e.g., OCR) to introduce new abilities

GILLMapper: An Improved LLM-to-Generator Map

- Previous approaches use <u>linear mappings</u> between LLMs and visual models
- This is insufficient for image generation: decoders require <u>dense</u> information

Multimodal Few-Shot Learning with Frozen Language Models (<u>Tsimpoukelli et al., 2021</u>) Linearly Mapping from Image to Text Space (<u>Merullo et al., 2023</u>) Grounding Language Models to Images for Multimodal Inputs and Outputs (Koh et al., 2023)

Evaluation: Contextual Image Generation

	CLIP Similarity (↑)		LPIPS (\downarrow)			
Model	1 caption	5 captions	5 caps, 4 images	1 caption	5 captions	5 caps, 4 images
GLIDE [34] Stable Diffusion [43]	0.582 0.592 ±0.0007	$\begin{array}{c} 0.591 \\ 0.598 \pm 0.0006 \end{array}$	-	$\begin{array}{c} 0.753 \\ 0.703 \ {\pm} 0.0003 \end{array}$	$\begin{array}{c} 0.745 \\ 0.704 \pm 0.0004 \end{array}$	-
GILL	0.581 ± 0.0005	$\textbf{0.612} \pm 0.0011$	0.641 ± 0.0011	0.702 ± 0.0004	0.696 ±0.0008	$\textbf{0.693} \pm 0.0008$

- Our model outperforms Stable Diffusion on longer input contexts
- This is despite GILL (essentially) distilling from SD!
- GILL benefits from the abilities of the LLM (sensitivity to longer inputs, word orderings, in-context learning)

Evaluation: Contextual Image Generation

- Given a Visual Dialogue, generate a relevant image
- Need to condition on long dialogue-like text (OOD with finetuning data)

Evaluation: Contextual Image Generation

	CLIP Similarity (†)		LPIPS (\downarrow)			
Model	1 round	5 rounds	10 rounds	1 round	5 rounds	10 rounds
GLIDE [34] Stable Diffusion [43]	0.562 0.552 ±0.0015	0.595 0.629 ±0.0015	$\begin{array}{c} 0.587 \\ 0.622 \pm 0.0012 \end{array}$	0.800 0.742 ±0.0010	$\begin{array}{c} 0.794 \\ 0.722 \pm 0.0012 \end{array}$	0.799 0.723 ±0.0008
GILL	0.528 ± 0.0014	0.621 ± 0.0009	0.645 ±0.0010	$\textbf{0.742} \pm 0.0022$	$\textbf{0.718} \pm 0.0028$	0.714 ±0.0006

Image generators require **denser** input sequences. Linear mappings are insufficient.

	CC3M	VIST
Model	FID (↓)	CLIP Sim (†)
Stable Diffusion [43]	13.94	0.598
Ours + Linear	15.50	0.500
Ours + 3-layer MLP	15.33	0.502
Ours + Transformer Encoder	16.30	0.605
Ours + GILLMapper	15.31	0.641

Other Abilities: Text-to-Image Generation

Stable Diffusion

Ours

"A dignified beaver wearing glasses, a vest, and colorful neck tie. He stands next to a tall stack of books in a library."

Stable Diffusion

Ours

"A drop-top sports car coming around a bend in the road"

Stable Diffusion

Ours

"Snow mountain and tree reflection in the lake"

Stable Diffusion

Ours

"a group of penguins in a snowstorm"

Evaluation: HumanEval Benchmark

Constructed by authors of Codex paper; programming puzzle/simple contest problems. Evaluated using unit tests.

```
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
   Check if in given list of numbers, are any two numbers closer to each other
        than given threshold.
   >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
   False
   >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
   True
    .....
    for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:
                    return True
   return False
```

Model Training

Training Data

- 600K permissively-licensed repositories from GitHub & GitLab. ~150GB total
- StackOverflow: questions, answers, comments. ~50GB

Models

- Standard transformer LM
- IB model: ~1 week on 128 V100s
- 6B model: ~3 weeks on 240 V100s

Evaluation

- Zero-shot evaluation on several software development-inspired code infilling tasks (we'll show two).
- Compare the model in three different modes to evaluate benefits of suffix context

Evaluation: Function Completion

Constructed from HumanEval [Chen et al. 2021]

Evaluation: Function Completion

Constructed from HumanEval [Chen et al. 2021]

Evaluation: Function Completion

Fill in one or more lines of a function; evaluate with unit tests.

```
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
    .....
   Check if in given list of numbers, are any two numbers closer to each other
        than given threshold.
   >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
   False
   >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
   True
    .....
    for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:
                    return True
    return False
```

Method	Pass Rate
L-R single	24.9
L-R reranking	28.2
CM infilling	38.6

Constructed from HumanEval [Chen et al. 2021]

Evaluation: Docstring Generation

```
def count words(filename: str) -> Dict[str, int]:
    0.0.0
    Counts the number of occurrences of each word in the given file.
                                                                           Method
                                                                                                           BLEU
                                                                                                            16.05
                                                                           Ours: L-R single
    :param filename: The name of the file to count.
                                                                           Ours: L-R reranking
                                                                                                            17.14
    :return: A dictionary mapping words to the number of occurrences.
                                                                           Ours: Causal-masked infilling
                                                                                                            18.27
    0.0.0
    with open(filename, 'r') as f:
           word counts = {}
           for line in f:
               for word in line.split():
                   if word in word counts:
                        word_counts[word] += 1
                   else:
                       word counts [word] = 1
       return word_counts
```

Evaluation: Return Type Prediction

Type Inference

<pre>def count_words(filename: str) -> Dict[str, int]: """Count the number of occurrences of each word in the file."""</pre>	Method	
<pre>with open(filename, 'r') as f:</pre>		F1
<pre>word_counts = {}</pre>	Ours: Left-to-right single	30.8
for line in f:	Ours: Left-to-right reranking	33.3
<pre>for word in line.split():</pre>	Ours: Causal-masked infilling	59.2
<pre>if word in word_counts:</pre>	True Witten (Sumervised)	
word_counts[word] += 1	TypeWriter (Supervised)	48.3
else:		
word_counts[word] = 1		
<pre>return word_counts</pre>		

Training Models on Human Instructions

