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Figure 1: Map of TVCG based on 1,343 TVCG titles in DBLP, heatmap overlay based on 34 papers by the most prolific TVCG author.
(Multi-Word Term extraction, C-Value with Unigrams ranking, Partial Match Jaccard Coefficient similarity, Pull Lesser Terms filtering, N = 1500.)
The terms in the map are contained in 1,041 TVCG titles (78% coverage).

ABSTRACT

We describe a practical approach for visual exploration of research
papers. Specifically, we use the titles of papers from the DBLP
database to create what we call maps of computer science (MoCS).
Words and phrases from the paper titles are the cities in the map, and
countries are created based on word and phrase similarity, calculated
using co-occurence. With the help of heatmaps, we can visualize
the profile of a particular conference or journal over the base map.
Similarly, heatmap profiles can be made of individual researchers or
groups such as a department. The visualization system also makes it
possible to change the data used to generate the base map. For example,
a specific journal or conference can be used to generate the base map
and then the heatmap overlays can be used to show the evolution
of research topics in the field over the years. As before, individual
researchers or research group profiles can be visualized using heatmap
overlays over a specific journal or conference base map. We outline
a modular and extensible system for term extraction using natural
language processing techniques, and show the applicability of methods
of information retrieval to calculation of term similarity and creation of
a topic map. The system is available at mocs.cs.arizona.edu.

Index Terms: H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Clustering; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing—Linguistic processing;
H.5.m [Information Interfaces and Presentation]: Miscellaneous—
Information visualization
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1 INTRODUCTION

Providing efficient and effective data visualization is a difficult
challenge in many real-world software systems. One challenge lies
in developing algorithmically efficient methods to visualize large and
complex data sets. Another challenge is to develop effective visualiza-
tions that make the underlying patterns and trends easy to see. Even
tougher is the challenge of providing interactive access, analysis, and
filtering. All of these tasks become even more difficult with the size of
the data sets in modern applications. In this paper we describe maps of
computer science (MoCS), a functional visualization system for a large
relational data set, based on spatialization and map representations.

Spatialization is the process of assigning 2D or 3D coordinates
to abstract data points, ideally in such a way that the spatial map-
ping shares many characteristics with the original (higher dimen-
sional) space. Multi-dimensional scaling (MDS), principal component
analysis (PCA), and force-directed methods are among the standard
techniques that allow us to spatialize high-dimensional data.

Map representations provide a way to visualize relational data
with the help of conceptual maps as a data representation metaphor.
Graphs are a standard way to visualize relational data, with the objects
defining vertices and the relationships defining edges. It requires an
additional step to get from graphs to maps: clusters of well-connected
vertices form countries, and countries share borders when neighboring
clusters are tightly interconnected.

In the process of data mining and data analysis, clustering is a very
important step. Maps are helpful in visually representing clusters.
First, by explicitly defining the boundary of the clusters and coloring
the regions, we make the clustering information clear. Second, as
most dimensionality-reduction techniques lead to a two-dimensional
positioning of the data points, a map is a natural generalization.
Finally, while it often takes us considerable effort to understand graphs,
charts, and tables, a map representation is intuitive, as most people are
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Figure 2: The main steps of the MoCS system are querying documents from DBLP, extracting terms from these titles, ranking terms by importance,
calculating term similarity, further filtering terms based on similarity, and finally performing multidimensional scaling and clustering to produce
a basemap, over which a heatmap can be overlaid.

familiar with maps and map-based interactions such as pan and zoom.

An overview of our MoCS system is in Figure 2 and our main
contributions are as follows. First, we describe a visualization system
which interactively generates base maps of computer science from
the DBLP bibliography server [23]: from maps based on all 2,184,055
papers available in the database, to maps based on a particular journal
or conference, to maps based on an individual researcher. These maps
are generated from words and phrases extracted from the titles of the
research papers in DBLP. Terms are selected based on their importance
in the titles, and positioned and clustered according to co-occurrence
similarities between terms. Some difficulties in making topic maps
from research paper titles result from the short length of titles and
the sparsity of terms, so we introduce several modifications designed
to produce informative topic maps even from these short documents.
Second, our system provides great flexibility in visualizing focus-data
and context-data through a heatmap and basemap system. In
particular, temporal heatmap overlays allow us to see the evolution
of fields, journals, and conferences over time. Individual heatmap
overlays allow the visualization of individual researchers in the field,
or individual researchers in a particular conference, or individual
papers in a particular conference. Finally, the MoCS system is
modular, extensible, available online, and with complete source code,
thus making it easy to change various components: from the natural
language processing steps, to the creation of the graph that models
the topics, to the visualization of the results.

2 RELATED WORK

Using maps to visualize non-cartographic data has been considered
in the context of spatialization by Skupin and Fabrikant [29] and
Fabrikant et al. [13]. Rendering topical spaces as a map dates to
work on term-maps by Callon et al. [8]. Work at PNNL resulted in
document visualization systems such as Wise et al.’s Themescape [35],
which used layers and terrain to represent text document corpora,
and successive systems Spire and In-Spire. Recent systems include
VOSviewer [30] and the Sci2 system [5], which provide an adaptable
set of tools for spatial visualization of large document collections.

GMap uses the geographic map metaphor for visualizing relational
data and was proposed in the context of visualizing recommendations,
where the underlying data is TV shows and the similarity between
them [16, 18]. This approach combines graph layout and graph
clustering, together with appropriate coloring of the clusters and

creating countries based on clusters and connectivity in the original
graph. A comprehensive overview of graph based representations
by von Landesberger et al. [33] considers visual graph representation,
interaction, editing, and algorithmic analysis.

Word clouds and tag clouds have been in use for many years [28,31].
The popular tool, Wordle [32] took word clouds to the next level with
high quality design, graphics, style and functionality. While these
early approaches do not explicitly use semantic information such
as word relatedness in placing the words in the cloud, several more
recent approaches do. Koh et al. [21] use interaction to add semantic
relationship in their ManiWordle approach. Parallel tag clouds by
Collins et al. [9] are used to visualize evolution over time with the help
of parallel coordinates. Cui et al. [10] couple trend charts with word
clouds to keep semantic relationships, while visualizing evolution over
time with help of force-directed methods. Wu et al. [36] introduce
a method for creating semantic-preserving word clouds based on
a seam-carving image processing method and an application of
bubble sets. Paulovich et al. [27] combine semantic proximity with
techniques for fitting word clouds inside general polygons.

There is a great deal of related work on natural language processing,
text summarization, topic extraction and associated visualizations.
Statistical topic modeling relies on machine learning techniques to
extract semantic or thematic topics from a text collection, e.g., via
Latent Semantic Analysis [11], or Latent Dirichlet Allocation [4].
Extensions to these topic models allow discovery of topics underlying
multi-word phrases [34] and the use of additional syntactic structure,
such as sentence parse trees, to aid inference of topics [7]. The topics
provide an abstract representation of the text collection and are used
for searching and categorization.

Motiviation for our work as a visualization of semantic topics
in scientific research journals is summarized well by Mane and
Börner [24], who introduce maps produced from scientific journals
as a way to identify emerging research areas and the relationship
between existing fields. Börner et al. [6] outline several of the
techniques that we apply here, including co-occurrence similarity
calculation and multi dimensional scaling.

Previous work has investigated visualization of search queries.
Batagelj et al. [2] visualize coauthorship networks in DBLP
corresponding to topical queries. WhatsOnWeb [17] visualizes
web page search results as a graph hierarchically clustered by
semantically-related pages. Document similarities are calculated



Figure 3: Section of a multi-word term map of 1,343 TVCG paper
titles using the C-Value with Unigrams, Partial Match Jaccard
Coefficient, and Pull Lesser Terms functions, with N = 1500.

using common text between documents, weighted by term ranking.
MoCS uses variations of these techniques to calculate term similarity
using document co-ocurrence.

Our system extends the word- and topic-visualization systems ref-
erenced above with semantic, multi-word natural language processing
techniques. Since multi-word terms can convey greater technical speci-
ficity than single-word terms, such multi-word extraction, ranking, and
similarity algorithms are necessary to adequately visualize important
research topics and their relationships to one another. Additionally, our
system introduces adjustments to these algorithms designed to handle
sparsity of data resulting from the multi-word nature of terms and
the short length of documents (only paper titles, not abstracts or full
text, are available in DBLP). Finally, the system allows visualization
of a target set of documents within a context set of documents through
the heatmap and basemap technique. Combined with the ability to
sample and query from the titles of more than 2 million papers, these
features constitute a system for visualizing specific thematic topics
and their similarities in usage across a large number of documents.

3 MAPS OF COMPUTER SCIENCE

Here we describe the main steps in the system: natural language
processing (term extraction, term ranking, term filtering, similarity
matrix), and graph and map generation (distance matrix, embedding,
clustering, coloring).

3.1 Term Extraction

In the first step of map creation, multi-word terms are extracted from
the titles of papers in DBLP. Part of speech (POS) tags are used to
choose words that constitute topically meaningful terms, and exclude
functional words (words that convey little semantic meaning, such
as “the”, “and”, and “a”). The Natural Language Toolkit (NLTK)
POS tagger [3] is used to label the words in all titles with POS tags.
Once a title is tagged, maximal subsequences of words with POS tags
matching the following regular expression are extracted from titles:

(〈JJ〉|〈JJR〉|〈JJS〉|〈NN〉|〈NNS〉|〈NNP〉|〈NNPS〉)∗

JJ,JJR, and JJS are tags representing normal adjectives, comparative
adjectives, and superlative adjectives, respectively, while NN, NNS,
NNP, and NNPS are nouns, plural nouns, proper nouns, and proper
plural nouns, respectively. This regular expression was chosen to
extract a subset of noun and adjectival phrases including modifiers
such as noun adjuncts and attributive adjectives.

Maps can be created with these multi-word terms (Figure 3), or
the terms can be broken up into their constituent words (Figure 4)
to parallel the word-based visual representations of systems such as
Wordle [32].

Figure 4: Section of a single-word term map of 1,343 TVCG paper
titles using the TF, LSA, and Pull Lesser Terms functions, with
N = 1800.

3.2 Term Ranking

Once multi-word or single word terms are extracted, they can be
assigned importance scores, or weights, based on their usage in the
corpus of titles. Terms are then ordered by their weights to produce a
ranking of terms, of which the top terms can be selected for inclusion in
the visual map representation. We implement four such ranking func-
tions in the MoCS system: Term Frequency, Term Frequency/Inverse
Comparison Frequency, C-Value, and C-Value with Unigrams.

Under the term frequency ranking function, each term’s weight
is the number of times it occurred within the corpus. We seek to
exclude common phrases that convey little semantic meaning, such
as “introduction” (which occurs 9th in a list of multi-word terms or-
dered by frequency from a 1,000,000 title sample of DBLP, occurring
618 times). To accomplish this, term frequency–inverse document
frequency (TF/IDF) [25] assigns a weight to a term proportional to its
frequency in the document and inversely proportional to the number
of other documents it appears in. In our domain, terms usually occur
no more than once in each title. Therefore, we adapt TF/IDF to this
task by treating the entire collection of titles as a single document, and
counting the term’s frequency in a reference corpus from a different
domain to use as the inverse weighting value. We refer to the resulting
method as term frequency–inverse comparison frequency (TF/ICF).
The Brown Corpus [14], a selection of English text drawn from wide-
distribution literature, is currently used as the comparison corpus.

C-value [15] is designed to account for possible nesting of multi-
word terms (where short terms appear as word subsequences of longer
terms). C-value incorporates total frequency of occurrence, frequency
of occurrences of the term within other longer terms, the number of
types of these longer terms, and the number of words in the term. The
weight assigned by C-value is proportional to the logarithm of the num-
ber of words in a term, so we also include a modified implementation,
C-value With Unigrams, that adds one to this length before taking the
logarithm, allowing single-word terms to be assigned non-zero weight.

After terms are assigned importance weights, they are sorted in
order of descending weight, and the top N terms are selected for
possible inclusion in the map. N (Number of Terms) is a configurable
parameter passed to the MoCS system. The value chosen for this
parameter allows a large degree of control over the number of terms
considered for inclusion in the map but greatly affects system runtime.
We provide a default (N = 1500) that produces good maps relatively
quickly for a wide range of map queries.

3.3 Similarity Matrix Computation

Once a set of top terms is selected, pairwise similarity values
between top terms are calculated. We seek similarity functions
that measure how closely the topics represented by two terms are
related. Terms that refer to the same or similar topic, or topics that
are closely associated, should receive high similarity values. We use



term-document co-occurrence as the basis of these similarity values,
assuming that terms that appear together in multiple titles are more
likely to be related in meaning.

The similarity functions take a term-document matrix, M, as input.
The columns of M correspond to titles of papers from DBLP, and
rows correspond to terms extracted by the term-extraction step. Each
entry is the frequency of occurrences of the term indexed by the
entry’s row in the title indexed by the entry’s column. We implement
three similarity functions of this matrix M in the MoCS system:
Latent Semantic Analysis [11], Jaccard Coefficient [19], and Partial
Match Jaccard coefficient.

Latent Semantic Analysis (LSA) [11] is a method of extracting under-
lying semantic representation from the term-document matrix, M. A
low-rank approximation to the term-document matrix is used to calcu-
late the distance between terms in a vector-space representation reflect-
ing meaning in topical space. The singular value decomposition of M
is calculated using sparse-matrix methods, and rows in this decomposi-
tion represent terms as feature vectors in the high-dimensional seman-
tic space. Terms are compared using cosine similarity [25] of the fea-
ture vectors to produce a matrix of pairwise similarities between terms.

Because of the short length of documents in our domain, the
entries in the term-document matrix are effectively boolean. We
provide Jaccard coefficient [19] as an alternative similarity function to
accommodate the nearly boolean nature of the term-document matrix.
Jaccard coefficient calculates pairwise term similarity as the number
of documents two terms appeared together in, divided by the number
of documents either term appeared in:

Jacc(Si,S j) =
|Si ∩S j|

|Si ∪S j|

where Si and S j are the sets of documents containing the two terms.
Jaccard coefficient alone treats terms as atomic units: multi-word
terms only match if they are identical. This approach produces very
sparse similarity matrices when used with a ranking algorithm such
as C-value that prioritizes multi-word terms. To address this, we
use a modification we refer to as Partial Match Jaccard Coefficient.
This method attempts to address the sparsity of the C-value matrices
by treating two terms as identical for the purpose of co-occurrence
calculation if they contain a common subsequence of words.

3.4 Term Filtering and Distance Calculation

Term similarities have been calculated between the N highest ranked
terms in the previous step. The next stage in the pipeline is filtering,
choosing the terms to include in the map. We implement two filtering
methods in the MoCS system: Top Terms and Pull Lesser Terms.

Top Terms is the simplest type of filtering, where we take the
top-ranked K terms from the N highest ranked terms (K ≤ N). The
map is made from these terms and the terms’ pairwise similarity
values. Our current system has K set to 150. In practice, sparsity
of data causes this method to produce fragmented maps, as the
K terms often have low similarity to other top terms (particularly
when the multi-word term-extraction system is used). We try to
minimize fragmentation while still including a large number of terms
in this map, and we chose this value of K to qualitatively balance
fragmentation and map size after experimenting on a number of
different document queries. However, Top Terms provides a decent
default filtering method for single-word term maps, which have less
of a long-tail frequency distribution than multi-word terms.

Pull Lesser Terms attempts to address the fragmentation of the
top terms method, by using not only the highest ranked terms, but
also including lesser-ranked terms if they are similar to a top-ranked
term. Specifically, this method takes as input the N highest ranked
terms, termsN , and their pairwise similarities, as calculated in the
ranking and similarity steps of the pipeline. The method plots
the J highest ranked terms, termsJ , from among termsN , and the
max associated terms number of most similar terms from termsN

for each term in termsJ . Effectively, this method pulls in terms
beyond the top J, if they are more similar to a top term than any of the
other top terms. The default parameter values in our current system
are J = 90, max associated terms = 8.

The pairwise term similarity matrix is next converted into a matrix
of distances for use by the multi-dimensional scaling or force-directed
algorithms of GMap. Let S(ti, t j) ∈ [0,1] be the similarity between
two terms, calculated using either LSA, Jaccard Coefficient, or Partial
Match Jaccard Coefficient. Some choices of document sets and
ranking and similarity functions produce terms with a similarity
distribution more narrow than the theoretical range of the similarity
function, so rescaled similarity values are calculated as

Ŝ(ti, t j) =
S(ti, t j)

maxm,n:m 6=n S(tm, tn)
.

The distance between these two terms, D(ti, t j), is calculated using
these rescaled similarity values as

D(t1, t2) =− log[(1−σ) · Ŝ(t1, t2)+σ ],

where σ is a small, positive, constant scaling value, currently set to
0.1, used to ensure a non-zero value inside the logarithm in the case
that two terms have a pairwise similarity of 0. Linear transformations
of similarities into distances produced layouts with dense term
distributions and fragmented clusterings, which are less suitable for
the map metaphor. A logarithmic scale allows comparison of relative
distance between terms with low pairwise similarity by magnifying
the distances between these terms.

3.5 Map Generation

We begin with a summary of the GMap algorithm for generating
maps from static graphs [18]. The input to the algorithm is a set
of terms and pairwise similarities between these terms, from which
an undirected graph G = (V,E) is extracted. The set of vertices V
corresponds to the terms extracted from titles and the set of edges
E corresponds to the top pairwise similarities between these terms
as determined by the chosen filtering algorithm.

The number of edges created depends on the dataset but is
limited by a parameter, max edges, passed to the filtering procedure.
For each term, the max edges number of edges with the highest
nonzero similarity values are included in the map. This prevents
the graph from being overconstrained by very low term similarities,
which would produce highly fragmented clusters. The final map
includes the union of all these sets of highest ranked edges, so it
is possible for a given term to have more than max edges edges.
We use a default value of 8 (chosen to correspond to the value of
max associated terms in Pull Lesser Terms) for this parameter.

In the first step of GMap the graph is embedded in the plane using
a scalable force-directed algorithm [20] or multidimensional scaling
(MDS) [22]. In the second step, a cluster analysis is performed
in order to group vertices into clusters, using a modularity-based
clustering algorithm [26].

We use information from the clustering to guide the MDS-based
layout. In the third step of GMap, the geographic map corresponding
to the data set is created, based on a modified Voronoi diagram of the
vertices, which in turn is determined by the embedding and clustering.
Here “countries” are created from clusters, and “continents” and
“islands” are created from groups of neighboring countries. Borders
between countries and at the periphery of continents and islands are
intentionally modified, aiming for irregularity, which is typical of
historical and geographic boundaries, and leads to more map-like
results. Finally, colors are assigned with the goal that no two adjacent
countries have colors that are too similar, using the SPECTRAL
vertex labelling method [18].

To visualize the profile of a target query set of papers (for example,
papers from a specified time range, author, conference, or journal)



over a map, we use heatmap overlays. Heatmaps highlight the terms
in the basemap that also occur in the target query, with color intensity
proportional to the frequency of the term’s occurrence in the heatmap
query. Separate database queries are used to produce the basemap
and heatmaps (Figure 2), allowing a subset of the papers chosen for
the basemap to be used for the heatmap. For example, a basemap can
be constructed from a sample of all available papers, and a heatmap
constructed from all papers for a particular journal (Figure 6), or a
heatmap of a single author can be overlaid on a basemap of papers
from a journal that author frequently publishes in (Figure 1).

The heatmap intensity, I(t), is calculated for each term t that
appears in both the heatmap and basemap query sets. These intensities
are transformed on a logarithmic scale to allow terms with low I
values to be visible in the heatmap, and then normalized so that the
most frequently appearing term has intensity 1. The final normalized
and rescaled intensity value, I(t) is

I(t) =
log(F(t)+β )

maxt̂ [log(F(t̂)+β )]

where F(t) is the frequency of the term in the hetamp query and β is a
small additive constant (currently set to 1) that ensures terms that only
appeared once in the heatmap query still receive a positive I(t) value.

We plot these I(t) values over terms using a blue and purple
heatmap overlay. Each term t with I(t) > 0 has a semi-transparent
circle laid over it, with the color intensity at the center of the circle
scaling according to the value of the I(t). In the current color scheme,
this means that terms highlighed in purple were used more frequently
than those highlighed in blue.Basemaps are rendered in the browser
as vector graphics, and heatmaps are drawn as a semi-transparent
raster overlay using the OpenLayers [1] heatmap implementation.

4 DBLP VISUALIZATION

A large map created from all 2,184,055 paper titles in DBLP is avail-
able online1. In this section we also provide examples of the ability of
the heatmap and basemap system to visualize specific types of queries.

4.1 Individual Heatmap Overlays

The MoCS system allows separate database queries for the documents
used to produce the basemap and the documents used to produce
the heatmap overlay. Using the author information in DBLP, we can
produce heatmap overlays of individual researchers over conferences
and journals that they frequently publish in. Figure 5 shows a basemap
constructed from titles of all papers published at the Conference on
Neural Information Processing Systems (NIPS), with a heatmap con-
structed from the titles of papers by the most prolific author at NIPS.
We see activity throughout the basemap, with particular intensity over
a section of terms referring to inference in graphical models.

4.2 Conference and Journal Overlays

The bibliographic information stored in DBLP allows us to plot
heatmaps of specific conferences and journals over a basemap
of all documents. Figure 6 shows heatmaps of papers from four
venues: the Computer Vision and Pattern Recognition conference
(CVPR), the Symposium on Theory of Computing (STOC), the
International Conference on Web Services (ICWS), and Transactions
on Visualization and Computer Graphics (TVCG). These heatmaps
are plotted from all available paper titles in the DBLP database for
each venue. The basemap over which the heatmaps are plotted is made
from 70,000 paper titles sampled uniformly from all entries in DBLP.
Some similarities can be seen between the venues: all share relatively
high intensity in their heatmaps over terms “application”, “analysis”,
“method”, and “evaluation” Some notable topical differences between
venues also stand out. CVPR has a high intensity region in the
northwest corner of the map over terms such as “images”, “objects”,

1http://mocs.cs.arizona.edu/tiled/canonical/

and “recognition”, while STOC has most high intensity in the
northeast corner of the map, over terms related to “graphs” and
“complexity”. ICWS has a high intensity in the south of the map over
terms “web services” and “systems” while TVCG is literally all over
the map, as visualization is associated with all areas of computing:
from visualization of algorithms to algorithms for visualization, from
design and analysis to applications and systems.

4.3 Temporal Heatmap Overlays

Specifying different date ranges for heatmap queries allows the
generation of maps that show how areas of research have spread
across the topic basemaps over time. The maps in Figure 7 show
how terms in the titles of papers published in the Journal of the ACM
(JACM) have shifted over the past six decades, starting in 1954. The
heatmap for papers from 1954-1963 has high intensity values over
terms dealing with numerical and matrix methods. Computational
complexity grows in intensity in the 1964-1973 map, and complexity
and algorithmic bounds outpace numerical methods in 1974-1983.
The algorithmic bound terms remain consistently intense throughout
the remaining decades. A conspicuous trend is the narrowing focus
of the journal over time: in the first four decades the topics are all
over the map, but in the last decade the topics are concentrated around
complexity, algorithms, and bounds.

5 IMPLEMENTATION

5.1 Modularity

The system is built with a modular design to accommodate future
incorporation of additional algorithms for ranking, similarity, and
filtering, as well as application to new document databases. We plan
to expand the system’s capabilities by testing the ability of other
algorithms to produce maps that provide a better visual representation
of the latent topic space. Source code for the system is available for
others who wish to experiment with algorithms of their own.

5.2 Database

Paper titles and meta-information are stored in a SQL database,
containing entries for 2,184,055 papers, journal articles, conference
proceedings, theses, and books. This bibliographic information is
parsed from an XML dump of DBLP entries, containing author, con-
ference or journal, and date meta-information for each paper title [23].

Figure 5: A heatmap produced from 75 papers by the author who
has published most frequently at NIPS, over a basemap made from
3,553 NIPS papers, using C-Value with Unigrams ranking, Partial
Match Jaccard Coefficient similarity, and Pull Lesser Terms filtering,
with N = 1100. The basemap terms are contained in 2,770 NIPS
documents (78% coverage).



(a) Heatmap for CVPR made from 3,665 documents (b) Heatmap for STOC made from 2,685 documents

(c) Heatmap for ICWS made from 1,288 documents (d) Heatmap for TVCG made from 1,826 documents

Figure 6: Conference and journal heatmaps overlaid on a map generated from 70,000 paper titles, sampled uniformly from all available DBLP
papers, using C-value With Unigrams, Partial Match Jaccard Coefficient, and Pull Lesser Terms, with N = 1500. The basemap terms are contained
in 1,660,311 of 2,184,055 DBLP papers (76% coverage).

Each paper is associated with its author and journal or conference if
this information is available in DBLP. The database contains records
for 1,324 journals, 6,904 conferences, and 1,237,445 authors which
can be used to filter document title queries for map construction.

5.3 System Details and Runtime

The system is implemented using Python 2.7. NLTK [3] provides
the POS labelling used for term extraction. The server is hosted in
Django, using Celery as a back-end task manager, and SQLAlchemy
for database interface. Maps are displayed in the user’s browser using
SVG rendering capabilities of AT&T’s GraphViz system [12]. These
SVG elements are rendered in a zoomable and pannable container
provided by the open source OpenLayers JavaScript display library [1].
Heatmaps are overlaid with the heatmap plugin in OpenLayers and
additional JavaScript for positioning the heatmap. Full source code
is available at mocs.cs.arizona.edu/code.php.

MoCS currently runs in a virtual machine on a HP Proliant DL360
G6 server with 2 Intel Xeon CPU X5570@2.93GHz processors and
8GB of memory. Creating a map from 30,000 documents, sampled
across all of DBLP, takes an average of 64 seconds with the default
settings (multi-word phrases, N = 1500 terms, using C-value, Jaccard
Partial Match, and Pull Lesser Terms). By stage, average runtimes
are 30 seconds for sampling documents from the database, 1 second
for ranking terms, 6 seconds for ordering terms and choosing the
top, 25 seconds for similarity value calculation, 1 second for filtering,

and 1 second for map drawing. Creating maps from a single author
or conference is significantly faster, as the speed of the similarity
calculation is heavily dependent on the number of documents sampled.
Creating a map from all 2 million DBLP titles using C-value, Jaccard
Partial Match, Pull Lesser Terms, and N = 5000 takes 8 hours.

6 DISCUSSION

Here we briefly summarize the novelty and utility of the MoCS system
and discuss challenges in its implementation.

6.1 Novelty

While the MoCS system relies on standard NLP techniques to ex-
tract terms, rank terms and compute similarity between them, we
had to solve non-trivial problems presented by the short documents
and long-tailed frequency distribution of the terms in DBLP paper
titles. In particular, the average title contains only 10.3 words and 2.9
multi-word terms. The multi-word terms have a long-tailed frequency
distribution: there are over 2 million distinct terms in the database,
but 80% of these occur only once. We have addressed these problems
through application of two main strategies: exploiting the nested and
overlapping nature of multi-word terms (through the Jaccard Partial
Match and C-Value algorithms), and using similarities to inform inclu-
sion in the map (in Pull Lesser Terms, a variant of query expansion).

While the use of spatialization and map-based metaphor for
visualizing relational data is not new, our heatmap-basemap



(a) JACM heatmap for 1954-1963 (b) JACM heatmap for 1964-1973 (c) JACM heatmap for 1974-1983

(d) JACM heatmap for 1984-1993 (e) JACM heatmap for 1994-2003 (f) JACM heatmap for 2004-2013

Figure 7: Heatmaps of six decades of papers from Journal of the ACM (JACM). Basemap is generated from multi-word terms extracted from
the titles of 1,998 paper titles published in JACM, using the C-Value with Unigrams ranking, Partial Match Jaccard Coefficient similarity, and
Pull Lesser Terms filtering functions, with N = 1400. 200 paper titles were sampled uniformly from the JACM’s publications for each decade
to create the heatmaps. Full resolution images are available at http://mocs.cs.arizona.edu/figures.php. The basemap terms
are contained in 1,543 titles from JACM (77% coverage).

visualization framework allows us a great deal of new flexibility in
showing focus-data (e.g., research topics of a particular researcher)
in the context of a larger set of the data (e.g., a conference that the
researcher publishes frequently). Moreover, we can show pairs of
focus-data/context-data at different levels of detail (e.g., research
topics of a particular researcher in the context of the entire DBLP
data), and over time (for example, how a researcher’s interests have
shifted over time by creating a heatmap of five years of his or her
work over a basemap of all papers he or she has published).

Finally, our system is, to our knowledge, the only one of its kind that
is fully functional online and provides complete source code. We have
tried to design both the database backend and the ranking, similarity,
and filtering stages in a modular fashion. This should allow extension
of the system with additional algorithms for term ranking and similar-
ity, and its eventual application to different databases of text documents
such as grant proposals or collections of papers from other fields.

6.2 Utility

The MoCS framework would be useful in scientometrics, the science
of measuring and analysing science research, and in the related fields
of history of science and technology, and sociology of scientific
knowledge. MoCS makes it possible to combine arbitrary basemaps
with heatmap overlays, which allows great flexibility in document
query visualization. For example, the work of a scientist can be
viewed in the context of his or her venue of choice, a subfield, or
the entire field of computer science. By filtering based on publication
date, the system facilitates the identification of trends and patterns
in research topics, e.g., the evolution of research topics over time
for a given research venue, for a given researcher, or for an institution.

A heatmap of a group of researchers over the map of CS can highlight
the research strengths of an entire department, making it possible
to summarize in a glance research across departments. This could
be useful for prospective graduate students looking for departments
with strengths in their area of interest.

Many journals (e.g., Cell, Earth and Planetary Science, Molecular
Phylogenomics and Evolution) have recently added requirements for
graphical abstracts as a part of research paper submissions. These are
single-panel images designed to give readers an immediate understand-
ing of the take-home message of the paper. MoCS can be used to gener-
ate graphical abstracts using a basemap from the journal and heatmap
of the submission, positioning the paper on the venue’s topic map.

6.3 Challenges

MoCS is our first prototype and has not been optimized for speed or
memory usage. Scalability challenges can be overcome with better
database management, optimization of the NLP and Map-generation
algorithms, as well as precomputing similarities and query-specific
filtering. As with most real systems, MoCS relies on several parame-
ters. We have hard-wired a few (e.g., number of top terms, number
of related terms, etc.) to values that seem to produce maps of man-
ageable size. Several other parameters have default values but can be
modified in advanced-query mode. Ideally, such parameters would be
automatically set based on features of the specific query or resulting
graph, but this is beyond the scope of this initial prototype.

The goal of good embedding of the graph in 2D space (using
MDS) and the goal of clustering related nodes (using modularity)
are often contradictory. This results in either fragmented maps (maps
in which countries are made of many disconnected components)



or in maps where the countries are contiguous but at the expense
of distorting the natural embedding. Implementing and testing
different embedding/clustering algorithms and evaluating them for
compatibility will likely alleviate some of these problems.

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented a practical approach for visualizing
large-scale bibliographic data via natural language processing and
using a geographic map metaphor. We described the MoCS system
in the context of the DBLP bibliography server and demonstrated
several possible exploratory visualization uses of the system.

We would have liked to compare the performance of our system
against earlier and related approaches. However, this is nearly
impossible as very few such systems are fully functional online or
provide source code. We contacted the authors of several earlier
semantic word-cloud or spatialization based systems but none were
able to share source code or executables.

While ours is indeed a functional system, and it does offer various
options for the natural language processing step, for the generation
of the graph, and for the final map rendering, there are many possible
future directions:

1. We can study departmental, state-wide, and even country-wide
profiles over the base map of CS. This would hopefully allow
us to visually compare and contrast the type of research done in
different universities, states, and countries.

2. Automatic labeling of countries on the map can be accomplished
by looking for the most frequent conferences and journals with
topics in a particular country, and using the most relevant terms.

3. We plan to perform in-depth user studies to evaluate the effec-
tiveness of the various algorithms. Do terms in the maps match
what experts expect to see? Do similarities between terms reflect
perceived semantic similarities between the represented topics?

4. The methodology described here is not limited to computer science
research papers. We would like to generalize to other research
areas, such as physics (ArXiv) and medicine (PubMed).

ACKNOWLEDGEMENTS

We thank Henry Kerschen for help with the the webpage for the maps
of computer science server: mocs.cs.arizona.edu. We also
thank Stephan Diehl, Sandiway Fong, Yifan Hu, and David Sidi for
discussions about this project and ongoing system evaluation.

REFERENCES

[1] OpenLayers: Free maps for the web. http://www.openlayers.org/.

[2] V. Batagelj, F.-J. Brandenburg, W. Didimo, G. Liotta, P. Palladino,

and M. Patrignani. Visual analysis of large graphs using (X,Y)-

clustering and hybrid visualizations. IEEE Trans. Vis. Comput. Graph.,

17(11):1587–1598, 2011.

[3] S. Bird, E. Klein, and E. Loper. Natural language processing with

Python. O’Reilly Media, Incorporated, 2009.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

[5] K. Börner. Plug-and-play macroscopes. Communications of the ACM,

54(3):60–69, 2011.

[6] K. Börner, C. Chen, and K. Boyack. Visualizing knowledge domains.

Annual Review of Information Science and Technology, 37(1):179–255,

2003.

[7] J. Boyd-Graber and D. M. Blei. Syntactic topic models. In Neural

Information Processing Systems, 2008.

[8] M. Callon, J. Law, and A. Rip. Mapping the Dynamics of Science and

Technology: Sociology of Science in the Real World. Macmillan Press,

1986.

[9] C. Collins, F. B. Viégas, and M. Wattenberg. Parallel tag clouds to explore

and analyze faceted text corpora. In IEEE VAST, pages 91–98, 2009.

[10] W. Cui, Y. Wu, S. Liu, F. Wei, M. X. Zhou, and H. Qu. Context-

preserving, dynamic word cloud visualization. Computer Graphics and

Applications, 30:42–53, 2010.

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and

R. Harshman. Indexing by latent semantic analysis. Journal of the

American Society for Information Science, 41(6):391–407, 1990.

[12] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.

Graphviz - open source graph drawing tools. In Graph Drawing, pages

483–484, 2001.

[13] S. I. Fabrikant, D. R. Montello, and D. M. Mark. The distance-similarity

metaphor in region-display spatializations. IEEE Computer Graphics

& Application, 26:34–44, 2006.
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